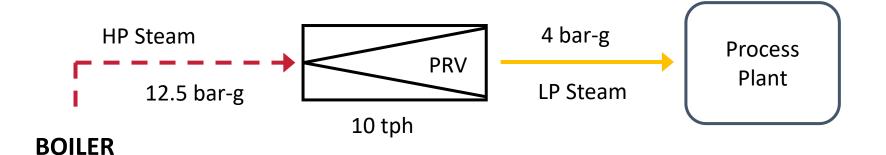
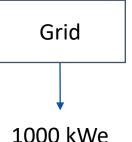
INCIDENTAL POWER GENERATION

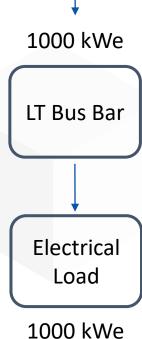
ROLLCE ENGINEERING

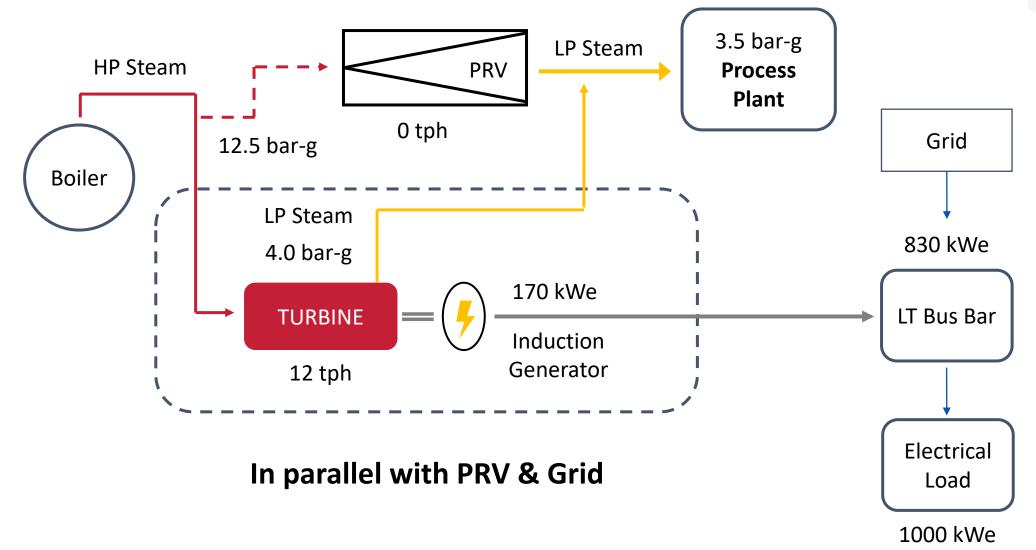
© 2022 ROLLCE ENGINEERING PTE LTD | All Rights Reserved.

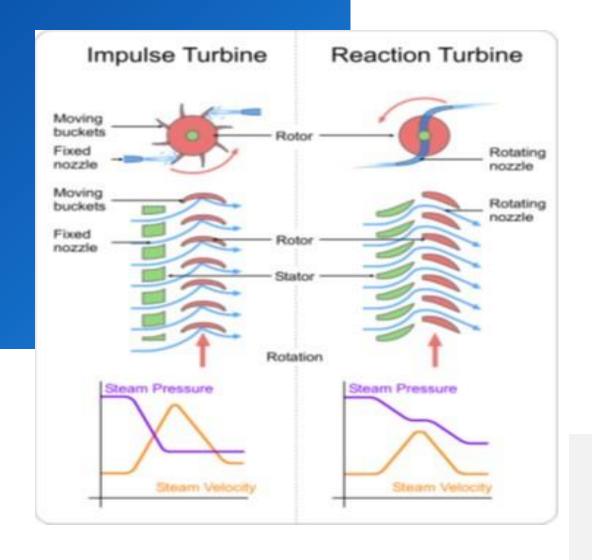
Who We Are?


As an agile-minded organisation, Rollce Engineering is always looking to improving our services and solutions as a multi-disciplinary engineering and construction company. With our integrated solutions on smart energy in the field of Energy & Environment Conservation, Rollce is creating a new statement on sustainability and conservation practices. Our innovative solutions and cutting-edge products help to create a New Tomorrow with our technology and partners.




Present Way – Steam Throttling





- Steam pressure/throttling reduction through a Valve
- Steam potential in pressure reduction not utilised effectively

Steam Turbines

Incidental Power Generation

Back pressure turbines developed for saturated steam harnesses the potential of the pressure difference between boiler pressure and process pressure to generate incidental electricity and operate in parallel to PRV.

Turbines Operating Zones

- ➢ Boiler Operating pressure range
- Process pressure range
- > Steam flow range
- > Steam condition
- Incidental Power range
- > Turbine operating speed

7 - 32 bar-g

up to 3 bar-g

3 - 30 TPH

saturated at inlet

50 to 1500 kW

3000 - 8300 rpm

Turbine Advantages

- Completely automated unit with PLC & HMI
 - o Ease of operation and troubleshooting
 - o No manual intervention even during start/stop
 - o Minimal operator interface
 - o Improves reliability
 - o Control logic takes care of the process variations
- Induction generator (IG) based system
 - o No separate grid synchronization required
 - o Simple system and ease of operation
 - o Can operate even with DG sets
 - o No speed governor required

Turbine Advantages

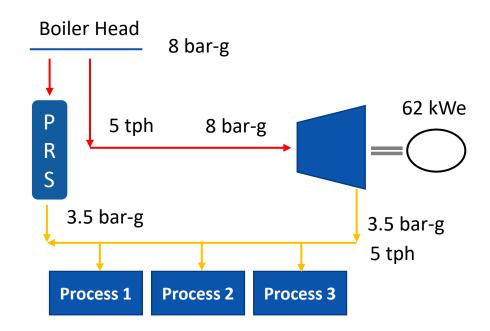
- Traditional turbines had limitations on steam turn-down (~50%) and poor efficiency at part load operations
- Next Gen Turbine with Multiple inlet control valves overcomes both issues
 - o Improves turndown up to 20% of the rated flow
 - o Gives higher output at part loads more annual yield
 - o Completely done automatically based on flow fluctuations without
 - o operator intervention
 - Nozzle banks designed according to flow variations and controlled through individual control valves

Turbine Advantages

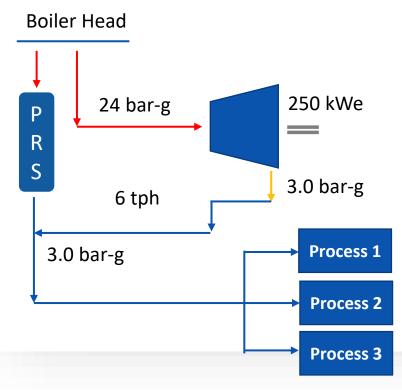
- Fully packaged unit
 - o Skid mounted unit requires minimum site work
 - o Requires less space for installation
 - o Plug-and-play system
- Improved design
 - o Minimal maintenance
 - o Seals protected from moisture/condensation
 - o Less number of components higher reliability
 - o Only annual servicing required

Electrical Integration

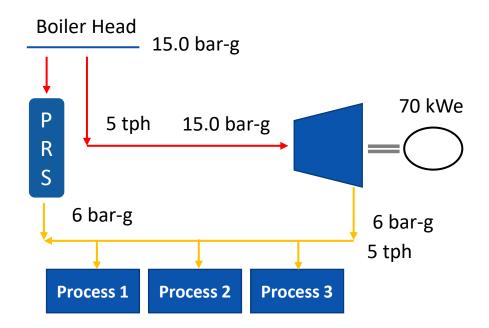
- Induction generator frequency & voltage controlled by grid
- No external grid synchronization is required
- Induction motor operating at speeds higher than synchronous
- To be connected to the LT bus bar (440 V) line


Utilities Required

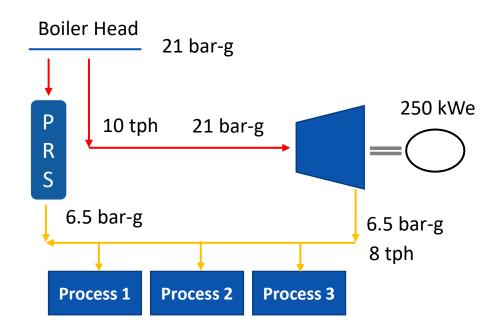
Sr. No	Parameters	Description		
1	Inlet Steam	At the inlet of flange of expander		
2	Exhaust steam	At the outlet flange of expander		
3	Condensate Drain	From the drain header		
4	Instrument air	At expander		
5	Electrical power supply	440 V AC supply at panel		


Case Studies Paper Plant

SAVINGS CALCULATIONS				
Annual average steam flow rate	5.0	tph		
Average electrical output	62.0	kWe		
Operating hours	22			
No. of working days	330			
Operating hours	7260	hours		
Daily electricity generation	1364	kWh		
Annual electricity generation	450,120	kWh		
Grid Electricity price	0.18	US\$/kWh		
Annual Savings	81,000	US\$/Annum		


Case Studies Pharma Plant

SAVINGS CALCULATIONS				
Annual average steam flow rate	6.0	tph		
Average electrical output	250.0	kWe		
Operating hours	24			
No. of working days	300			
Operating hours	7200	hours		
Daily electricity generation	6000	kWh		
Annual electricity generation	1,800,000	kWh		
Grid Electricity price	0.18	US\$/kWh		
Annual Savings	324,000	US\$/Annum		


Case Studies Rice Mill

SAVINGS CALCULATIONS				
Annual average steam flow rate	5.0	tph		
Average electrical output	70.0	kWe		
Operating hours	24			
No. of working days	330			
Operating hours	7920	hours		
Daily electricity generation	1680	kWh		
Annual electricity generation	554,400	kWh		
Grid Electricity price	0.18	US\$/kWh		
Annual Savings	99,792	US\$/Annum		

Case Studies Oil Mill/Refinery

SAVINGS CALCULATIONS				
Annual average steam flow rate	10.0	tph		
Average electrical output	250.0	kWe		
Operating hours	24			
No. of working days	330			
Operating hours	7920	hours		
Daily electricity generation	6000	kWh		
Annual electricity generation	1,980,000	kWh		
Grid Electricity price	0.18	US\$/kWh		
Annual Savings	356,400	US\$/Annum		

Get In Touch

We would love to hear from you, Drop a message and let our experts walk through any queries you have on our products and services.

LET'S CHAT

Contact us

- +65-6818 6131
- ◆ 10 Marina Boulevard, #39-00, Marina Bay Financial Center, Singapore 018983
- www.rollceglobal.com

Thank you

© 2022 ROLLCE ENGINEERING PTE LTD | All Rights Reserved